
ROBOTRACKER – A SYSTEM FOR
TRACKING MULTIPLE ROBOTS IN

REAL TIME

by Alex Sirota, alex@elbrus.com

Project in intelligent systems
Computer Science Department

Technion – Israel Institute of Technology

Under the supervision of Noam Gordon, Ronen Keidar

December 2004

2

TABLE OF CONTENTS

1. INTRODUCTION.. 3

2. SOLUTION AND ALGORITHMS ... 4

2.1. GENERAL... 4
2.2. IMAGE SEGMENTATION... 4
2.3. ROBOT IDENTIFICATION.. 5

3. SOFTWARE ARCHITECTURE .. 9

3.1. GENERAL... 9
3.2. SOFTWARE LIBRARIES USED.. 9

3.2.1. MFC... 9
3.2.2. Carnegie Mellon University Vision Library (CMVision)............................. 9
3.2.3. Additional classes.. 9

3.3. MAIN SOFTWARE MODULES... 10
3.3.1. CWatcher Class... 10
3.3.2. CRoboTrackerEngine Class.. 10
3.3.3. CRoboTrackerSever Class .. 10
3.3.4. CRoboTrackerDoc/CRoboTrackerView Classes 10
3.3.5. CCamera Class.. 10

3.4. MODULE DYNAMIC RELATIONS ... 11

4. THE ROBOTRACKER APPLICATION .. 12

4.1. GENERAL... 12
4.2. LOADING IMAGES AND MOVIE CLIPS... 12
4.3. SAVING IMAGES AND MOVIE CLIPS ... 13
4.4. ANALYZING THE INPUT ... 13
4.5. SETTING THE MASK... 13
4.6. SETTING THE THRESHOLDS... 14
4.7. MOVIE CLIP PLAYBACK... 15
4.8. CAMERA GRABBING .. 15
4.9. CHANGING THE CAMERA SETTINGS.. 16
4.10. SAVING AND LOADING THE SETTINGS... 16
4.11. SAMPLING THE PIXEL VALUES .. 16

5. THE TCP/IP SERVER.. 17

6. RESULTS AND CONCLUSIONS... 18

6.1. RESULTS.. 18
6.2. FUTURE IMPROVEMENTS.. 18

7. REFERENCES... 19

3

1. INTRODUCTION

The goal of the project is to track multiple robots in real time using a video

camera. The robots are small LEGO Mindstorms vehicles that are moving

inside an arena. The video camera is positioned on the ceiling above the

arena. The video feed from the camera is analyzed in real time and the

robot positions are determined.

4

2. SOLUTION AND ALGORITHMS

2.1. General

In order to locate the robots in the image they are marked with colorful

"hats". The "hat" is actually a color coded marker that uniquely identifies

the robot. The floor of the arena and other non-robot objects are assumed

to be achromatic. Colorful stationary objects can be masked out from the

analysis (see below).

2.2. Image segmentation

Image segmentation is done using a color based thresholding in the HSV

color space, followed by a connected components analysis.

First, the image is converted from the RGB color space to HSV. This is

done using pre-calculated lookup tables to increase performance.

If a mask is specified and a mask pre-processing mode is selected (see

below) all the masked-out pixels of the input frame are set to black and will

be ignored by the algorithm.

During the thresholding stage the image is divided into robot and non-robot

pixels according to their Hue, Saturation and Brightness values. Robot

pixels are assumed to be of Red/Blue/Green hues and having high

saturation. The default thresholds are set accordingly. Segmenting using

the hue and the saturation values allows the algorithm to be more robust to

changes in lighting conditions. The choice of only the primary hues for

color coding allows high separation between the different color codes, as

5

these values divide the color spectrum into three distinct regions, with the

primary color in the middle of each region. This allows the algorithm to

identify each color code with high level of certainty.

The Hue scale

Note - the red hue has two regions, as the hue scale is cyclic with the red

hues at the upper and the lower edges of the scale. Thus, two sets of

thresholds are needed for identifying the red pixels.

After the image has been thresholded and each pixel classified as

Background/Red/Blue/Green pixel, a connected components analysis is

performed on the classification map. The result of this analysis is a list of

the found connected components (regions), each region having a color

code (R/G/B), centroid coordinates and a calculated area.

2.3. Robot identification

As mentioned above, each robot is marked with a colorful marker which

uniquely identifies it. The marker surface has any number of co-centric

colorful areas (typically circles), with each consecutive surface having a

different color (R/G/B). This is in a way a unique color "bar-code" of the

robot. The code is calculated by appending the robot colors going from the

6

inner-most patch outwards. If a numerical representation is needed the

color name is substituted with a digit – 1 for red, 2 for green, 3 for blue.

A sample marker "hat" for the R-G-B robot (123)

For example, a robot having a red circle surrounded by a blue ring, which

in turn is surrounded by a green ring will have "R-B-G" code (132).

Another robot with the same number of rings having the same colors but in

a different order can have a code like "B-G-R" (321).

Under the above coding scheme with a maximum number of 3 rings, a total

number of 21 possible robots can be coded (3 robots with a single color, 6

robots with two colors and 12 robots with 3 colors). If 4 rings are used, 45

possible robots (codings) are possible.

As with a round circle marker (having one middle circle and any number of

surrounding rings) the areas of the consecutive color patches should

increase going from the inner-most patch outwards, in order for the

algorithm to uniquely identify the robot. This heuristic (area) can easily be

substituted with bounding box analysis that can theoretically give more

stable results.

7

The algorithm for identifying the robots given a list of regions in the

image:

1. Cut-off:

a. Small regions (minimum area threshold)

b. Regions having very high ratio between their height and

width (ratio thresholds). Robot markers are assumed to

have a ratio that is close to 1:1, areas having higher ratios

often appear on the image object edges as a result of de-

mosaicing artifacts.

c. Regions that fall outside the interest of region mask (if

specified). This is done only in mask post-processing mode

(see below).

2. Sort and group all the regions by their centers. Two regions having

centers that are close enough to each other (robot center distance

threshold) will be classified as belonging to the same robot.

3. For each robot – sort its regions by area. The order of the found

regions for any specific robot gives its unique color code. The

principle used is that the inner-most patch will have the smallest

area and so on. This is geometrically correct for circles and other

shapes.

8

The complete analysis process:

RGB
Image

HSV
Image

Classified
Color Map

Region
List

Robot
Regions
Only

Robots
and their
Colors

Robots
and their
IDs

9

3. SOFTWARE ARCHITECTURE

3.1. General

This section describes the software system implemented, its main modules

and data flows between them.

The complete source code, documentation of the class and file hierarchies,

etc. is available in a browsable HTML form.

3.2. Software Libraries Used

3.2.1. MFC

The system is implemented in C++, using MS Visual
Studio 6.0 and MFC.

3.2.2. Carnegie Mellon University Vision Library (CMVision)

Carnegie Mellon University

Author: James R. Bruce

This software package was re-factored by me to support the

HSV color model. It is used for segmentation and

connected components detection.

3.2.3. Additional classes

CAviFile by P.GopalaKrishna

http://www.codeproject.com/bitmap/createmovie.asp

CIniReader by Aisha Ikram

http://www.codeproject.com/file/ini.asp

CSmartEdit, CLinkSlider by Rick York

http://www.thecodeproject.com/editctrl/smartedit.asp

10

CMutexRW by Joris Koste

http://www.codeproject.com/threads/mutexrw.asp

3.3. Main Software Modules

The main modules of the system are:

3.3.1. CWatcher Class

This class is responsible for image analysis. The theoretical

grounds for this class' operation are laid in section 2.

3.3.2. CRoboTrackerEngine Class

This is the main system class. Responsible for interaction

with the various input methods (camera, image files, movie

clips), the CWatcher image analysis class and several other

classes.

3.3.3. CRoboTrackerSever Class

Responsible for sending the current robots positions to any

number of clients through TCP/IP sockets.

3.3.4. CRoboTrackerDoc/CRoboTrackerView Classes

The system uses the MFC document/view model. These

classes are responsible for the UI logic and presentation

respectively.

3.3.5. CCamera Class

Provides an interface to the PGR FlyCapture camera driver

11

3.4. Module Dynamic Relations

The Engine

CRoboTrackerEngine

TCP/IP Server
CRoboTrackerServer

Camera
CCamera

Image Files
CFileUtils

Movie Clips
CAviFile

Image Analysis
CWatcher

Thresholding and
Connected

Components Analysis
CMVision

Configuration
CIniReader

GUI

CRoboTrackerDoc

CRoboTrackerView

12

4. THE ROBOTRACKER APPLICATION

4.1. General

The RoboTracker application allows obtaining images from image files

(BMP, PPM) movie clips (AVI) and getting a live video feed from the

camera. The image data obtained is displayed, analyzed and the found

robots are shown on the image. The application can also be used to see the

classification bitmaps, set masks, record the camera feed, adjust the

thresholds and the camera settings and to save and load these settings.

The application also acts as a server, sending the found robot positions to

any number of clients using TCP/IP.

4.2. Loading images and movie clips

Use the File > Open command or the icon to open BMP and PPM

files or AVI movie clips.

13

4.3. Saving images and movie clips

Use the File > Save command or the icon to save the current frame to

a BMP file.

While grabbing images from the camera, you can use the Camera >

Record command or the icon to start recording the video feed to an

AVI file. Press this button again to stop recording.

4.4. Analyzing the input

Use the Vision > Analyze command or the icon to start analyzing the

current frame(s) and displaying the found robots.

While analyzing, you can use the Vision > Show classification command

or the icon to display the classification results of the current frame.

This mode is used for debugging and fine tuning, as it considerably slows

down the algorithm.

4.5. Setting the mask

Use the Vision > Mask > Load command or the icon to load a mask

image. A mask image is a regular BMP image having the same dimensions

as the input frame. All the Red (255, 0, 0) pixels in this image will be

masked out.

In order to conveniently create a mask, you can save the current frame,

open it in Paint and draw over the areas you want to mask out with a red

pen or brush. Save this image as BMP and load it in RoboTracker.

After the mask image has been loaded you can change the mask mode

using the Vision > Mask > Preprocess or the Vision > Mask >

14

Postprocess commands. In the pre-process mode, all the pixels that should

be masked out are removed from the image (blackened) and the image

analysis algorithm ignores them. In the post-process mode no pre-

processing is done, and the robot regions that fall into the masked out areas

are discarded. Each of the algorithms has its advantages and disadvantages

and can be more effective under different circumstances. With pre-

processing, the algorithm must go over the entire frame (on every frame)

and blacken the needed pixels. While this slows the algorithm down, the

speedup that can be obtained because the algorithm has fewer regions to

consider can outweigh this slow down. On the other hand, considering all

the regions and disregarding the ones that fall outside the mask can

sometimes be considerably faster. I suggest testing the two algorithms

under the given circumstances and seeing which one performs better.

After the mask has been loaded, it can be turned off using the Vision >

Mask > Off command. Also, you can display a superimposed image of the

mask using the Vision > Mask > Show command or the icon.

4.6. Setting the thresholds

Use the Vision > Thresholds > Adjust command or the icon to open

the thresholds dialog. You can adjust the Hue, Saturation, Value thresholds

for the four colors – Low Red, High Red, Green, Blue, as well as the other

thresholds – the minimal region area to consider, the maximum

height/width ratio for an element and the maximal distance between the

region centers in order for the regions to be considered as belonging to the

same robot. See section 2 for more details on these settings.

When you adjust the thresholds in the dialog, you see the segmentation and

tracking results in real time on the screen. This way you can easily adjust

the thresholds to obtain the best possible results for a given environment.

15

4.7. Movie clip playback

After loading a movie clip you can:

• use the Playback > Play command or the icon to start the

playback

• use the Playback > Pause command or the icon to pause the

playback.

• use the Playback > Stop command or the icon to stop the

playback.

• when paused, use the Playback > One frame step command or

the command to step one frame at a time.

• you can turn on and off the playback looping using the Playback >

Loop command or the icon.

4.8. Camera grabbing

Use the Camera > Start grabbing command or the icon to connect

to the camera and start grabbing frames.

Use the Camera > Pause grabbing command or the icon to pause

the grabbing and freeze the current frame

16

4.9. Changing the camera settings

After the camera is connected you can use the Camera > Settings >

Adjust command or the command to open the camera settings dialog.

You can see the changes in the image and the analysis while changing the

values, without the need for closing the dialog first.

4.10. Saving and loading the settings

Use the File > Load Settings or the File > Save Settings to load or save

all the current settings. This includes thresholds, camera settings (if the

camera is connected), the server port number etc.

To save or load only the thresholds, use the Vision > Thresholds > Save

or the Vision > Thresholds > Load command.

To save or load only the camera settings, use the Cameta > Settings >

Save or the Camera > Settings > Load command. The camera must be

connected first. The settings saved are:

4.11. Sampling the pixel values

While going over the image pixels with your mouse, you can see the

current pixel HSV values on the status bar. This values can help correctly

set the thresholds.

17

5. THE TCP/IP SERVER

The system listens for incoming TCP/IP connections on port 6666 (can be

changed). Each client that connects to this port sends any number of bytes

to the server to start receiving data.

After the initial connection has been established, and the server reads a

data packet from the client, it will start sending data packets to the client

every time new robot location data is available.

The data is sent as text. This allows easy debugging and diagnostics and

allows a wide variety of clients – ones written using scripting languages,

compiled languages, Java, .NET, telnet etc. The size overhead comparing

to the binary communication is minimal.

The format of every packet sent by the server is as follows:

[new line] == "\r\n", the START/END markers are not a part of the packet.

-------------------------- START OF DATA PACKET --------------------------

size of data that follows in bytes[new line]

timestamp in milliseconds[new line]

number of robots[new line]

robot1 id[space]x position[space]y position[space]optional data[new line]

robot2 id[space]x position[space]y position[space]optional data[new line]

.

.

robotN id[space]x position[space]y position[space]optional data[new line]

-------------------------- END OF DATA PACKET --------------------------

18

6. RESULTS AND CONCLUSIONS

6.1. Results

The system successfully locates robots in the input video feed of large

images (1024x768) in real time.

The choice of thresholds and the camera settings (gain, exposure) is

important. If these settings are defined correctly, the system is quite robust

to changes in lighting conditions and noise.

6.2. Future Improvements

The algorithms can be improved in several aspects. The area based sorting

can be substituted with bounding box analysis to obtain better stability.

Automatic threshold adjustment can be implemented. The information

from the previous frames can be used to search in the vicinity of the

previously found robots in order to improve performance.

19

7. REFERENCES

1. J.D.Foley, A.Van-Dam, S.K.Feiner and J.F.Hughes, Computer
Graphics - Principles and Practice

2. B. K. P. Horn, Robot Vision, 1986.

3. A. K. Jain, Fundamentals of Digital Image Processing, 1989

4. James Bruce, Tucker Balch, Manuela Veloso, Fast and Inexpensive

Color Image Segmentation for Interactive Robots, School of Computer
Science Carnegie Mellon University

5. James Bruce, Realtime Machine Vision Perception and Prediction,

2000

6. A. Sirota, D. Sheinker, O. Yossef, Controlling a Virtual Marionette

Using a Web Camera, Project in intelligent systems, Technion, August
2003

