ROBOTRACKER — A SYSTEM FOR
TRACKING MULTIPLE ROBOTS IN
REAL TIME

by Alex Sirota, alex@elbrus.com

Project in intelligent systems
Computer Science Department
Technion — Israel Institute of Technology

Under the supervision of Noam Gordon, Ronen Keidar

December 2004

1

2.

7.

TABLE OF CONTENTS

INTRODUCTION. ..ottt sttt s a s s be st saa s sre st esaessreesbesnessas 3
SOLUTION AND ALGORITHMS ...t 4
2.1. (€ V] =27 P 4
2.2. IMAGE SEGMENTATION. . ttttuuiiietiiieeeiitieeesestineessesas s smmmmn s essssaassessbanesssssnnsnes 4
2.3. ROBOT IDENTIFICATION ...cttttieeettieeeeseti s e e eeebe e e s eaaa s smmmmms s s s saa s e e sabbaeeseanansas 5
SOFTWARE ARCHITECTURE ...ttt 9
3.1 GEINERAL. ...cttuteetttte e ettt et e e ettbe e e s eataa s smmmmm e s s s saa s e e s s bbaeessesanseessssanseesssmnmmns 9
3.2. SOFTWARELIBRARIESUSED ..uuuiiiiiiiiiiiiiiie ettt e st e e e mmmmme st eseaaae e e e aenan 9
G T2 N |V | = T 9
3.2.2. Carnegie Méllon University Vision Library (CMVISION).......ccccoveeeenerennn. 9
TG T Vo (o] 10 = o F= S T 9
3.3. MAIN SOFTWAREIMODULES.ciittiieeeitie e e e eetieeeseeaeseeeesvmmmmmes s s s seaaaseaseees 10
T TN T O V111 (6 0 1< G O = TR 10
3.32. CRODbOTrackerENGiNg ClaSs.........ccceuiuiuiuririeiriieieeeieeeeeeee s 10
3.3.3. CRODOTracker SEVEr ClasS.......coocciiieeieeee et 10
3.34. CRoboTrackerDoc/CRoboTrackerView Classes........ocoveevevcevseesieceenes 10
335, CCAMETACIASS......cocuiceeceeee ettt st st st sae s st st srs 10
3.4. MODULE DYNAMIC RELATIONS ...cvuiiiiiiiiieieeeiieee st eeeeatte e s smmmmme s esaaeeaeenen 11
THE ROBOTRACKER APPLICATION ..ottt 12
4.1. (€=] =1 P 12
4.2. LOADING IMAGES AND MOVIE CLIPS......cuuuuuuiieeeeeeeeeeeeeeesssssnseesesemmmmmessssnnns 12
4.3. SAVING IMAGES AND MOVIE CLIPScoeiieeeviiieeeeeeeeeeeeeeeevaseee e e e s emmmmmesaeesnnnns 13
4.4, ANALYZING THE INPUT «.tittiieeeeitieeeeeeeaeeeeeetteeeeeasan s smmmmms e s s sesanseessssnneesessnnnns 13
4.5. SETTING THE MASK ... eeiettieeeieeseeeetteessseaaassesses s smmmmmsaa s s e sebaaesssssnnssssssssanaeees 13
4.6. SETTING THE THRESHOLDS ...uuuieitttieeiieiieeesettaeeesessas s smmmmmsessessnssesssrsneseses 14
4.7. IMOVIE CLIP PLAYBACK ...ctttteeeettie e e ettt e e e ettt e e e seata s s smmmm s st eeae s s s ssbaassseennnses 15
4.8. CAMERA GRABBING ..1uuiiiitti i eeettte e e s et s e sttt s e e esmmmmms st b e e s sesaa s eesstbaaseesesaaans 15
4.9. CHANGING THE CAMERA SETTINGS...uuiiiitiiieiiitieeeisrieessessnsessssmmmmmsssnneees 16
4.10. SAVING AND LOADING THE SETTINGS.....cttuueiiiiitiiieeiitiieeeeeesiieesssssssmmmmmraeees 16
4.11. SAMPLING THE PIXEL VALUES ...cvuuiiiiiitiieeeietiieeesesieeeeeett s smmmmms e s s saaasessarann 16
THE TCP/IP SERVER. ...ttt ettt sttt eae s ts e s sre s 17
RESULTSAND CONCLUSIONS......coo ettt s st s 18
6.1. RESULTS ..ot emmmmme et e e e e e e e e e e e e e eeasaan s emmmmns 18
6.2. FUTURE IMPROVEMENTS ... iiiieeeieeeeeitiee e e e e e e e e e e e e e eeesasmmmmms e e e e e e e eeeessaannn e ns 18
L] o N[O o T 19

1. INTRODUCTION

The goal of the project is to track multiple robwiseal time using a video
camera. The robots are small LEGO Mindstorms vesitthat are moving
inside an arena. The video camera is positionetherceiling above the

arena. The video feed from the camera is analyaagal time and the

robot positions are determined.

2. SOLUTION AND ALGORITHMS

2.1 General

In order to locate the robots in the image theyraagked with colorful
"hats". The "hat" is actually a color coded martkeat uniquely identifies
the robot. The floor of the arena and other nomtabjects are assumed
to be achromatic. Colorful stationary objects camfasked out from the

analysis (see below).

2.2. I mage segmentation
Image segmentation is done using a color basedhblaing in the HSV

color space, followed by a connected componentysiaa

First, the image is converted from the RGB colacgpto HSV. This is

done using pre-calculated lookup tables to increas®rmance.

If a mask is specified and a mask pre-processingems selected (see
below) all the masked-out pixels of the input fraane set to black and will

be ignored by the algorithm.

During the thresholding stage the image is divitéal robot and non-robot
pixels according to their Hue, Saturation and Bnghs values. Robot
pixels are assumed to be of Red/Blue/Green hues havihg high

saturation. The default thresholds are set acoglgdirSsegmenting using
the hue and the saturation values allows the dfgorio be more robust to
changes in lighting conditions. The choice of otilg primary hues for
color coding allows high separation between thé&ght color codes, as

these values divide the color spectrum into thieendt regions, with the
primary color in the middle of each region. Thikak the algorithm to

identify each color code with high level of certgin

TheHuescale

Note - the red hue has two regions, as the hue &alyclic with the red
hues at the upper and the lower edges of the sChlgs, two sets of

thresholds are needed for identifying the red pixel

After the image has been thresholded and each mbessified as
Background/Red/Blue/Green pixel, a connected compisnanalysis is
performed on the classification map. The resulihcf analysis is a list of
the found connected components (regions), eaclorregaving a color

code (R/G/B), centroid coordinates and a calculated.

23. Robot identification

As mentioned above, each robot is marked with arftdlmarker which

uniguely identifies it. The marker surface has amynber of co-centric
colorful areas (typically circles), with each conisitve surface having a
different color (R/G/B). This is in a way a uniqoelor "bar-code” of the
robot. The code is calculated by appending thetroblors going from the

inner-most patch outwards. If a numerical repredent is needed the

color name is substituted with a digit — 1 for r2dor green, 3 for blue.

©

A samplemarker " hat" for the R-G-B robot (123)

For example, a robot having a red circle surrouriged blue ring, which
in turn is surrounded by a green ring will have BRG" code (132).
Another robot with the same number of rings hatiregsame colors but in

a different order can have a code like "B-G-R" (321

Under the above coding scheme with a maximum nuwitb&rings, a total
number of 21 possible robots can be coded (3 rokitiisa single color, 6
robots with two colors and 12 robots with 3 coloté) rings are used, 45

possible robots (codings) are possible.

As with a round circle marker (having one middielel and any number of
surrounding rings) the areas of the consecutivercphtches should
increase going from the inner-most patch outwardsprder for the
algorithm to uniquely identify the robot. This histic (area) can easily be
substituted with bounding box analysis that caroristcally give more

stable results.

The algorithm for identifying the robots given atliof regions in the

image:

1. Cut-off:

a. Small regions (minimum area threshold)

b. Regions having very high ratio between their heighd
width (ratio thresholds). Robot markers are assumneed
have a ratio that is close to 1:1, areas havingdmigatios
often appear on the image object edges as a @sdk-

mosaicing artifacts.

c. Regions that fall outside the interest of regionsknéf
specified). This is done only in mask post-progegsnode

(see below).

2. Sort and group all the regions by their centerso Tegions having
centers that are close enough to each other (c#Eder distance

threshold) will be classified as belonging to thens robot.

3. For each robot — sort its regions by area. Theraofi¢he found
regions for any specific robot gives its uniqueocotode. The
principle used is that the inner-most patch wilvdnahe smallest
area and so on. This is geometrically correct frles and other

shapes.

The complete analysis process:

RGB
Image

HSV

A 4

Image

Classified

" Color Map

| Region

7| List

Robot

Regions
Only

»| and their

Robots

Colors

»| and their

Robots

1Ds

3. SOFTWARE ARCHITECTURE

3.1 General

This section describes the software system impléderts main modules

and data flows between them.

The complete source code, documentation of the elad file hierarchies,

etc. is available in a browsable HTML form.

3.2. Software Libraries Used

321

3.2.2

3.2.3.

MEFC

The system is implemented in C++, using MS Visual
Studio 6.0 and MFC.

Carnegie Mellon University Vision Library (CMVision)
Carnegie Mellon University

Author: James R. Bruce

This software package was re-factored by me tomtifipe
HSV color model. It is used for segmentation and

connected components detection.

Additional classes
CAVviFile by P.GopalaKrishna

http://www.codeproject.com/bitmap/createmovie.asp

CiIniReader by Aisha lkram

http://www.codeproject.com/file/ini.asp

CSmartEdit, CLinkSlider by Rick York

http://www.thecodeproject.com/editctrl/smartedip.as

CMutexRW by Joris Koste

http://www.codeproject.com/threads/mutexrw.asp

3.3. Main Software Modules

The main modules of the system are:

3.3.1. CWatcher Class
This class is responsible for image analysis. Tieeretical

grounds for this class' operation are laid in seca.

3.3.2. CRoboTrackerEngine Class
This is the main system class. Responsible forrantmn
with the various input methods (camera, image ,fileevie
clips), the CWatcher image analysis class and akwather

classes.

3.3.3. CRoboTrackerSever Class
Responsible for sending the current robots postimnany

number of clients through TCP/IP sockets.

3.3.4. CRoboTrackerDoc/CRoboTrackerView Classes
The system uses the MFC document/view model. These
classes are responsible for the Ul logic and ptaten

respectively.

3.35. CCameraClass
Provides an interface to the PGR FlyCapture caniérar

10

34. Module Dynamic Relations

11

Camera Image Files Movie Clips
CCamera CFileUtils CAviFile
The Engine
Configuration
CRoboTrackerEngine ClniReader
Image Analysis TCP/IP Setver
CWatcher CRoboTrackerServer
Thresholding and
Connected
Components Analysis
CMVision GUI \
CRoboTrackerDoc
A 4
CRoboTrackerView

4. THE ROBOTRACKER APPLICATION

< RoboTracker
File Yiew “igion Camera Playback Help

O | B

{ _Red_Red_ Green_Red_(1121)

& een_ Red Red Green_(2?

| Green_ Red_Red (1211)

5 robot(s)

& - >
H:16 5:235 V248 MM

4.1. General

The RoboTracker application allows obtaining imagesn image files
(BMP, PPM) movie clips (AVI) and getting a live @d feed from the
camera. The image data obtained is displayed, zathland the found
robots are shown on the image. The applicationatembe used to see the
classification bitmaps, set masks, record the canfeed, adjust the

thresholds and the camera settings and to savieatthese settings.

The application also acts as a server, sendingptired robot positions to

any number of clients using TCP/IP.

4.2. L oading images and movieclips

Use theFile > Open command or the = icon to open BMP and PPM

files or AVI movie clips.

12

4.3. Saving images and movieclips

Use theFile > Save command or the icon to save the current frame to

a BMP file.
While grabbing images from the camera, you can theeCamera >

Record command or the ® icon to start recording the video feed to an

AVI file. Press this button again to stop recording

4.4. Analyzing theinput

Use theVision > Analyze command or th L icon to start analyzing the

current frame(s) and displaying the found robots.

While analyzing, you can use thésion > Show classification command

or the ** icon to display the classification results of therent frame.
This mode is used for debugging and fine tuningt asnsiderably slows

down the algorithm.

4.5. Setting the mask

Use theVision > Mask > Load command or the 2 icon to load a mask
image. A mask image is a regular BMP image haviegsame dimensions
as the input frame. All the Red (255, 0, 0) pixelghis image will be
masked out.

In order to conveniently create a mask, you care she current frame,
open it in Paint and draw over the areas you wambdask out with a red

pen or brush. Save this image as BMP and loadRbimoTracker.

After the mask image has been loaded you can chidmegenask mode

using theVison > Mask > Preprocess or the Vison > Mask >

13

Postprocess commands. In the pre-process mode, all the pikalsshould
be masked out are removed from the image (blachkesmed the image
analysis algorithm ignores them. In the post-precesode no pre-
processing is done, and the robot regions thaintallthe masked out areas
are discarded. Each of the algorithms has its ddgas and disadvantages
and can be more effective under different circumsta. With pre-
processing, the algorithm must go over the entaené (on every frame)
and blacken the needed pixels. While this slowsatgerithm down, the
speedup that can be obtained because the algdngisnfiewer regions to
consider can outweigh this slow down. On the otteerd, considering all
the regions and disregarding the ones that falkidetthe mask can
sometimes be considerably faster. | suggest testiagtwo algorithms

under the given circumstances and seeing whiclperferms better.

After the mask has been loaded, it can be turnedisafig theVision >
Mask > Off command. Also, you can display a superimposed irnatee

mask using th&’ision > Mask > Show command or the ° icon.

4.6. Setting the thresholds

Use theVision > Thresholds > Adjust command or the = icon to open
the thresholds dialog. You can adjust the Hue,r&adu, Value thresholds
for the four colors — Low Red, High Red, Green,eélas well as the other
thresholds — the minimal region area to considée mMmaximum
height/width ratio for an element and the maximigtahce between the
region centers in order for the regions to be a®msid as belonging to the

same robot. See section 2 for more details on s$ettiags.

When you adjust the thresholds in the dialog, y@itee segmentation and
tracking results in real time on the screen. They wou can easily adjust

the thresholds to obtain the best possible refulis given environment.

14

4.7. Movieclip playback

After loading a movie clip you can:

use thePlayback > Play command or the. ® | icon to start the

playback

e use thePlayback > Pause command or the I icon to pause the

playback.

e use thePlayback > Stop command or the " licon to stop the
playback.
e when paused, use tlitayback > One frame step command or

the L+ command to step one frame at a time.

e you can turn on and off the playback looping ushePlayback >

O

Loop command or the =~ icon.

4.8. Camera grabbing

Use theCamera > Start grabbing command or the™ icon to connect

to the camera and start grabbing frames.

Use theCamera > Pause grabbing command or the I icon to pause

the grabbing and freeze the current frame

15

4.9. Changing the camera settings
After the camera is connected you can useGhmera > Settings >

Adjust command or the* command to open the camera settings dialog.
You can see the changes in the image and the anelgde changing the

values, without the need for closing the dialogtfir

4.10. Saving and loading the settings
Use theFile > Load Settings or theFile > Save Settings to load or save
all the current settings. This includes threshotsnera settings (if the

camera is connected), the server port number etc.

To save or load only the thresholds, use\ti®on > Thresholds > Save

or theVision > Thresholds > L oad command.

To save or load only the camera settings, useCtraeta > Settings >
Save or the Camera > Settings > Load command. The camera must be

connected first. The settings saved are:

411. Samplingthe pixel values
While going over the image pixels with your mougeu can see the
current pixel HSV values on the status bar. Thisescan help correctly

set the thresholds.

16

5. THE TCP/IP SERVER

The system listens for incoming TCP/IP connectimmgort 6666 (can be
changed). Each client that connects to this peortis@ny number of bytes

to the server to start receiving data.

After the initial connection has been establishamt the server reads a
data packet from the client, it will start senditata packets to the client

every time new robot location data is available.

The data is sent as text. This allows easy debgg@ml diagnostics and
allows a wide variety of clients — ones writtenngsiscripting languages,
compiled languages, Java, .NET, telnet etc. The @zrhead comparing

to the binary communication is minimal.

The format of every packet sent by the server felasvs:

[new line] == "\r\n", the START/END markers are not a part of the packet.

-------------------------- START OF DATA PACKET == ===ssssssmmmmamaaaaaaaan
size of data that follows in bytes[new |ine]

tinestanp in mlliseconds[new |ine]

nunber of robots[new |ine]

robot1 id[space]x position[space]y position[space]optional data[new |ine]

robot 2 id[space] x position[space]y position[space]optional data[new |ine]

robot N i d[space] x position[space]y position[space]optional data[new |ine]
—————————————————————————— END OF DATA PACKET ---------mmmmmmm oo - -

17

6. RESULTS AND CONCLUSIONS

6.1. Results
The system successfully locates robots in the immego feed of large

images (1024x768) in real time.

The choice of thresholds and the camera setting®,(gxposure) is
important. If these settings are defined correc¢hig, system is quite robust

to changes in lighting conditions and noise.

6.2. Future Improvements

The algorithms can be improved in several asp&tis.area based sorting
can be substituted with bounding box analysis tmiobbetter stability.
Automatic threshold adjustment can be implementte information
from the previous frames can be used to searclnenvicinity of the

previously found robots in order to improve perfanoe.

18

7. REFERENCES

. J.D.Foley, A.Van-Dam, S.K.Feiner and J.F.HughesnQder
Graphics - Principles and Practice

. B. K. P. Horn, Robot Vision, 1986.

. A. K. Jain, Fundamentals of Digital Image Procegsir989

. James Bruce, Tucker Balch, Manuela Veloso, Fastramgbensive
Color Image Segmentation for Interactive Robotsio8tof Computer

Science Carnegie Mellon University

. James Bruce, Realtime Machine Vision PerceptionRaediction,
2000

. A. Sirota, D. Sheinker, O. Yossef, Controlling atvWal Marionette
Using a Web Camera, Project in intelligent systehashnion, August
2003

19

